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Abstract. The possibility of detecting weak lensing effects
from deep wide field imaging surveys has opened new means of
probing the large-scale structure of the Universe and measuring
cosmological parameters. In this paper we present a systematic
study of the expected dependence of the low order moments
of the filtered gravitational local convergence on the power
spectrum of the density fluctuations and on the cosmological
parameters Ω0 and Λ. The results show a significant depen-
dence on all these parameters. Though we note that this degen-
eracy could be partially raised by considering two populations
of sources, at different redshifts, computing the third moment is
more promising since it is expected, in the quasi-linear regime
and for Gaussian initial conditions, to be only Ω0 dependent
(with a slight degeneracy with Λ) when it is correctly expressed
in terms of the second moment.

More precisely we show that the variance of the convergence
varies approximately as P (k) Ω1.5

0 z1.5
s , whereas the skewness

varies as Ω−0.8
0 z−1.35

s , where P (k) is the projected power spec-
trum and zs the redshift of the sources. Thus, used jointly they
can provide both P (k) and Ω0. However, the dependence on the
redshift of the sources is large and could be a major concern for
a practical implementation.

We have estimated the errors expected for these parameters
in a realistic scenario and sketched what would be the obser-
vational requirements for doing such measurements. A more
detailed study of an observational strategy is left for a second
paper.

Key words: cosmology: dark matter; large-scale structures;
gravitational lensing

1. Introduction

The detection of weak gravitational lensing effects (weak shear
and magnification bias) at large distance from cluster centers is
now well established (see Fort & Mellier 1994 and Narayan &
Bartelmann 1996 for reviews). With the present development of
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wide field CCD detectors mounted on the best telescopes it be-
comes possible to start the investigation of large scale structures
from lensing effect observations in an angular area of signifi-
cant size. The shear and the magnification are expected to be
imposed on the background galaxies by the density fluctuations
along the line-of-sight. Compared to usual determinations of the
density fluctuations in the local universe with galaxy counts (in
fact, the light distribution), this approach is extremely attractive
since it is directly sensitive to the global mass fluctuations re-
gardless of any biases associated with the light distribution. The
detection of weak lensing has thus naturally been suggested as
a possible means to measure the power spectrum of the large
scale density fluctuations (Blandford et al. 1991).

Theoretical studies done by Blandford et al. (1991),
Miralda-Escudé (1991a), Kaiser (1992) and more recently by
Villumsen (1996) proposed various approaches and discussed
the feasibility of observational strategies for some specific cos-
mological scenarios. In all cases, they concluded that weak
lensing induced by large scale structures is detectable with the
present techniques. They claimed that the projected power spec-
trum should be recovered provided some crucial observational
issues, namely the correction of image degradation, are solved.
However, even if the observational aspects are certainly the main
difficulties in the future, different theoretical problems have not
been addressed yet. In particular, the dependence of the phys-
ical quantities (such as the convergence, see hereafter) on the
cosmological parameters have not been discussed in complete
detail. Moreover the errors associated with those quantities for
realistic scenarios of large scale structure formation. This paper
thus is a theoretical study in which we explore the dependence of
a priori physical quantities on the cosmological parameters. We
will focus our analysis on the second and third moment of the
local filtered convergence at large angular scale, i.e. in a regime
where Perturbation Theory results are expected to be valid. We
take here advantage of many results that have been obtained
in the last few years in this regime, showing that the Perturba-
tion Theory calculations give extremely accurate results for the
behavior of the high order moments of the cosmic density at
large scale (many papers should be quoted, see Juszkiewicz &
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Bouchet 1995 or Bernardeau 1996b for short review papers on
the subject).

Our aim is to present quantitative predictions on the behavior
of the moments of the one-point probability distribution func-
tion of the local convergence as a function of the matter power
spectrum, the cosmological parameters Ω0 and Λ. As long as
one is interested in its second moment in the linear regime, re-
sults can easily be extrapolated to other quantities such as the
magnification or the distortion (see Sect. 3 for more details on
these quantities and their relationships). For the third moment
however, the choice of the local convergence (or any other scalar
quantity) is crucial. The distortion is intrinsically irrelevant since
its third moment, for obvious symmetry reasons, should vanish.
The first non-trivial moment would then be its kurtosis, the con-
nected part of the fourth moment, but this is then more intricate
to calculate, and also would be more difficult to measure. Other
scalar quantities could have been considered, such as the local
magnification, but it is not (at the second order) directly propor-
tional to the local density, as it is the case for the convergence.
This is why we have preferred this latter quantity.

The paper is structured as follows. In Sect. 2 we present the
basic equations, valid for any cosmological model, from which
we derive the quantities of interest. In Sect. 3 we explore the
dependence of the variance of the convergence on the cosmo-
logical parameters. In Sect. 4 we consider third order moments.
In the last section we present a study of the expected errors
due to the use of a finite sample that are expected to affect the
measurements of the second and third moment. The errors have
been quantified for a realistic scenario (APM like power spec-
trum in an Einstein-de Sitter Universe). We eventually propose,
in view of the previous results, an adapted strategy to do such
observations. Throughout the paper we adopt the convention
H0 = c = 1, the physical distances have thus to be multiplied
by 3000 for H0 = 100 km/s/Mpc to be expressed in Mpc.

2. The physical model for the galaxy and mass distributions

The gravitational lensing effects makes intervene both the red-
shift distributions of the lenses and the sources. In the last section
we discuss in more detail the knowledge we have or need to have
on the sources, but at this stage we simply describe the redshift
distribution of these objects by n(z)dz with the normalization,∫ ∞

0
dz n(z) = 1 . (1)

To illustrate the results we will either assume that the sources
are all at the same redshift or are given by a broad distribution. In
the latter case we adopt a reasonnable analytic model which re-
produces the redshift distributions observed in the faint redshift
surveys and those expected from models of galaxy evolution
(Charlot & Fall in preparation),

n(z)dz =
8

Γ(9/8)

(
z

zs

)8

exp
[−(z/zs)8

] dz
zs

, (2)

in which it is assumed that the average redshift of the sources
is zs and that the width of the distribution is about 0.4 zs (see
Fig. 1, thin lines in the upper panel).

We are interested in the lensing effects induced by the large-
scale density fluctuations that are assumed to have emerged from
Gaussian initial conditions. In the linear regime we thus assume
that the local density can be written1,

δ(x, z) =
∫

d3k
(2 π)3/2

D+(z) δ(k) eik·x (3)

whereD+(z) is the time dependence of the linear growing mode.
Note that the function D+(z) depends on the cosmological pa-
rameters as well. It is proportional to the expansion factor only
for an Einstein-de Sitter universe. The Fourier transforms of the
initial local density contrast, δ(k), are assumed to form a set of
Gaussian variables. In such a case the power spectrum P (k) en-
tirely determines the statistical properties of the initial density
field. It is defined by〈
δ(k) δ(k′)

〉
= δDirac(k + k′) P (k). (4)

From the observed density fluctuation in the APM galaxy survey
it is possible to construct a realistic power spectrum P (k) for
both its magnitude and its shape. Using the results of Baugh &
Gaztañaga (1996) we can use the shape (we have set c = H0 =
1),

P (k) = 1.2 10−8 k[
1 + (k/kc)2

]3/2
, (5)

with

kc ≈ 150, (6)

that reproduces the observed density fluctuations in the linear
regime2. Baugh & Gaztañaga compared the observed fluctua-
tions in the APM galaxy survey with the prediction of this power
spectrum and found a good agreement in the linear regime. Re-
sults of numerical simulations also show that the nonlinear evo-
lution of the density fluctuations induced with such a spectrum
are in good agreement with the observed full shape of the an-
gular two-point correlation function.

In this paper, and contrary to previous studies, we do not
make any assumption on both the density of the Universe Ω0

and on the cosmological constant, Λ.

3. The Weak-Lensing equations

3.1. Description of the deformation in the image plane

The aim of this subsection is to present the mathematical objects
that describe the local gravitational deformation. In particular

1 Note that in case of a non flat Universe, the product k · x should be
understood as a covariant product, k · x = χkr + D0 k⊥ · ξ, where D0

and χ are respectively the angular distance and the distance along the
line-of-sight (Sect. 3.3).
2 We are aware that the adopted power spectrum does not have the
expected behaviour,P (k) ∼ k−3, when k →∞. But this should not be
a problem since we focus our calculations on the linear or quasilinear
regime. The large k behaviour of P (k) is therefore not relevant for the
purpose of this work.
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we recall the relationships between the local convergence κ,
the statistical properties of which we will investigate, and the
quantities that are more directly observable. We consider two
neighboring geodesics L and L ′ which are enclosed by a
light bundle, and we call θi the two dimensional position angle
between L and L ′ at the observer position. Let us define α
as the angular diameter distance between L and L ′ at a given
redshift z. We assume that the small angle approximation is
valid, and we have,

αi(z) = a Dij(z) θj , (7)

where in the case of an homogeneous Universe, Dij =
D0(z)δKij , a being the expansion factor, δKij the Kronecker sym-
bol, and D0(z) the physical distance, (see definition hereafter).
In an inhomogeneous Universe Dij describes the deformation
of the light bundle produced by the matter distribution. The an-
gular distance α corresponds to an angular position on the sky
ξ such that,

ξ =
α

aD0
. (8)

The shapes of the light bundles on the image plane are described
by the amplification matrix A, the Jacobian of the transforma-
tion from a virtual screen located at z (the source plane), to
the image plane as seen by the observer. Its inverse, A−1, is
actually more closely related to observable quantities,

A−1
ij(α, z) =

∂ξi
∂θj

. (9)

The amplification matrix can be expressed in terms of the geo-
metrical deformation of the light bundle, the convergence κ and
the shear components γ1 and γ2 (Schneider et al. 1992),

A−1(ξ) =

(
1− κ− γ1 −γ2

−γ2 1− κ + γ1

)
. (10)

In particular the local convergence κ(ξ) is given by the trace of
this matrix, through the equation,

κ(ξ) = 1− tr
[
A−1

ij(ξ)
]
/2. (11)

The intensity of the shear γ = γ1 + iγ2 is given by the ratio
of the eigenvalues of the matrix A−1. The relations between
the physical quantities (κ,γ) and the observable quantities, the
magnification (=amplification) µ and the distortion δ of the im-
ages, are given by,

µ =
1

|A−1| =
1

(1− κ)2 − γ2
; δ =

2g
1 + |g|2 , (12)

where g = γ/(1− κ). Note that in the weak lensing regime we
have the simple relations,

µ = 1 + 2κ ; δ = 2γ, (13)

In practice, the magnification is measured through the lo-
cal density of objects (Broadhurst et al. 1995, Broadhurst 1995,

Fort et al. 1996) or through the image size of galaxies in dif-
ferent surface brightness slices (Bartelmann & Narayan 1995),
whereas the distortion is measured directly from the shape of
the background galaxies (Bonnet al. 1994, Fahlman et al. 1994,
Smail et al. 1994, Squires et al. 1996a,b). One should be care-
ful when order moments of the local convergence higher than
the variance are considered, since non-linear couplings exist in
general between µ and δ, and Eqs. (13) cannot be used. It is
possible to get the convergence from Eqs. (12) by the measure-
ment of both the magnification and the distortion, or by using
only the distortion and the relation introduced by Kaiser (1995,
see also Seitz & Schneider 1996) which is valid even beyond
the linear regime,

∇ log(1−κ) =

(
1 + g1 g2

g2 1− g1

)−1

·


∂g1

∂θ1
+
∂g2

∂θ2−∂g1

∂θ2
+
∂g2

∂θ1

 .(14)

In the following we will thus assume that the local convergence
is accessible to the observations in a given sample, and we will
focus our investigations on the statistical properties of this quan-
tity.

3.2. The source equation for the deformation matrix

We perform the calculations assuming that the Born approxi-
mation is valid, i.e. that the deformation of a light bundle can
be calculated along the unperturbed geodesics. This assumption
will be discussed in Sect. 5.7. In a Friedmann-Robertson-Walker
(FRW) Universe, such a geodesic may be parameterized by the
time variable λ, defined by,

dλ = − da
H(a)

, λ(a = a0) = 0, (15)

where H(a) is the (time dependent) Hubble constant (in units
of H0). Using the Born approximation and the geodesic devi-
ation equation, the evolution equation for the angular diameter
distance α in a lumpy Universe, along the unperturbed ray, as
a function of λ is (Seitz 1993),

α̈(λ) = R(λ)α(λ), (16)

where R is the 2 × 2 symmetric tidal matrix, and depends on
the second derivatives of the Newtonian gravitational potential
(Sachs 1961, Seitz 1993),

R =

(
R−Re(F ) I m(F )

I m(F ) R + Re(F )

)
, (17)

R = −1
2
Rαβk

αkβ , (18)

F = −1
2
Cαβγδε

?αkβε?γkδ , (19)

where Rαβ is the Ricci tensor, Cαβγδ is the Weyl tensor, kα is
the wave-vector of the light ray and εα is a complex null vector
propagated along the geodesic such that εαkα = 0.
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Let ϕ be the 3-dimensional Newtonian gravitational poten-
tial. The comoving Poisson equation is,

∆ϕ = 4πG ρ̄ δ, (20)

where δ = (ρ − ρ̄)/ρ̄ is the density contrast, ∆ is the 3-
dimensional Laplacian operator, and the derivatives are done
with respect to the proper distance. Note that Eq. (20) does not
depend on the cosmological constant Λ. Then, it is straightfor-
ward to show that,

R = −4πGa−2ρ̄− a−2(∂11ϕ + ∂22ϕ) , (21)

F = −a−2(∂11ϕ− ∂22ϕ + 2i∂12ϕ). (22)

From Eqs. (7) and (16) the central equation driving the matrix
D is then,

d2
[
a(z) Dij(ξ, z)

]
dλ2

= a(z) Rik(ξ, z) Dkj(ξ, z), (23)

with the boundary conditions,

(
Dij

)
z=0

= 0 ;

(
dDij

dλ

)
z=0

= 1 . (24)

The first equation expresses the focusing condition at the ob-
server, and the second the Euclidean properties of the space at
small redshift. Rij is a symmetric matrix that can be written
in terms of ϕ, and ρ̄ using the expressions of R and F ,

Rij = −4πG ρ̄ a−2

(
1 0
0 1

)
− 2a−2

(
ϕ,11 ϕ,12

ϕ,21 ϕ,22

)
. (25)

Since 4πGρ̄ = 3/2 Ω0/a
3, for a completely homogeneous uni-

verse, the matrix Rij is given by,

R(0)
ij = −3

2
(1 + z)5Ω0δ

K
ij , (26)

and we are left with the equation for the distance

d2
[
a(z) D0(z)

]
dλ2

= −3/2 (1 + z)4 Ω0D0(z). (27)

We know that the solution of this differential equation is given
by

D0(z) =
1√

1−Ω0−Λ
sinh

[√
1−Ω0−Λ

∫ z

0

dz′

E(z′)

]
, (28)

with

E[z] =
√

Λ + (1 + z)2 (1−Ω0−Λ) + (1 + z)3 Ω0. (29)

This equation has a known analytical solution only when the
cosmological constant Λ is zero. Otherwise it has to be inte-
grated numerically.

3.3. The expression of the local convergence

In this section we restrict ourself to the linear regime. We then
assume that the difference between the local value of Rij(ξ, z)
and its value for a homogeneous universe is small, so that,

R(1)
ij (ξ, z) ≈ Rij(ξ, z)−R(0)

ij (z) (30)

≡ −3
2

Ω0 (1 + z)5 φ(1)
,ij(ξ, z), (31)

where we have introduced an effective potential φ such that,

1
2

∆φ(1)(ξ, z) = δ(1)
mass(ξ, z) =

∆ϕ(1)

4πGρ̄
, (32)

where δ(1)
mass(ξ, z) is the local mass over-density in the linear

regime. We assume the small angle deviation approximation
is valid. In that case, the plane-parallel approximation works,
which means that only waves perpendicular to the line-of-sight
contribute to lensing, and consequently we can neglect the sec-
ond order derivative along the unperturbed ray in the Laplacian
operator. Moreover, the difference Dij(ξ, z) − D0(z) δKij is a
small quantity, which can be expanded with respect to the initial
density. We then define D (1)

ij (ξ, z) as the part of this difference
which is linear in this density field (terms of higher order will
be considered in Sect. 5). The differential equation for D (1) can
then be derived from (23) and it reads,

d2
[
a(z) D (1)

ij (ξ, z)
]

dλ2
− a(z) R(0)

ik (z) D (1)
kj (ξ, z) =

−3
2

Ω0 (1 + z)4 D0(z) φ(1)
,ij(ξ, z) (33)

with

(D (1)
ij )z=0 = 0,

(
dD (1)

ij

dλ

)
z=0

= 0. (34)

To solve this differential equation it is more convenient to write
it with the variable z. The differential equation then reads,

d2 D (1)
ij (ξ, z)

dz2
+

1
E(z)

dE(z)
dz

dD (1)
ij (ξ, z)

dz
−

1
1 + z

1
E(z)

dE(z)
dz

D (1)
ij (ξ, z) +

3
2

Ω0 (1 + z)
E2(z)

D (1)
ij (ξ, z) (35)

= −3
2

Ω0 (1 + z)
E2(z)

D0(ξ, z)φ(1)
,ij(ξ, z). (36)

The homogeneous differential equation associated with this
equation has two known solutions, the distance functions D0(z)
and U0(z) are given respectively by Eq. (28) and,

U0(z) =
1√

1−Ω0−Λ
cosh

[√
1−Ω0−Λ

∫ z

0

dz′

E(z′)

]
, (37)

from which the solution of the differential equation (33) can be
written. Indeed the solution of the inhomogeneous differential
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equation reads

D (1)
ij (ξ, z) = −3

2
Ω0

∫ z

0
dz′

(1 + z′)4 D0(z′)φ(1)
,ij(z′)

E2(z′)
×

U0(z) D0(z′)−U0(z′) D0(z)
U ′

0(z′) D0(z′)−U0(z′) D ′
0 (z′)

, (38)

which, after elementary mathematical transformations simpli-
fies in,

D (1)
ij (ξ, z) = −3

2
Ω0

∫ z

0

dz′

E(z′)
1√

1−Ω0−Λ
× (39)

sinh

[√
1−Ω0−Λ

∫ z

z′

d z′′

E(z′′)

]
(1 + z′) D0(z′) φ(1)

,ij .

It follows from Eq. (11) that the local convergence can be written
for a source at redshift z (see also Seljak 1996),

κ(1)(ξ) = −3
2

Ω0

∫ χ(z)

0
dχ(z′)× (40)

D0(z′, z) D0(z′)
D0(z)

(1 + z′) δ(1)
mass(ξ, z

′),

where D0(z′, z) is the distance between the redshifts z′ and
z. We have also introduced the new variable χ(z), very useful
for such calculations, which is the physical distance along the
line-of-sight,

dχ(z) =
dz
E(z)

. (41)

It coincides with D0(z) only for a flat geometry Ω0 +Λ = 1. Eq.
(40) expresses the fact that the local convergence ∆µ = 2κ(1) is
given by the superposition of the convergence induced by each
lens between the observer and the source. For the distribution
of sources n(z) we thus have

κ(1)(ξ) = −
∫ ∞

0

dz′

E(z′)
w(z′)δ(1)

mass(ξ, z
′), (42)

with

w(z′) =
3
2

Ω0 (1 + z′) D0(z′)
∫ ∞

z′

dz n(z)
D0(z)

× (43)

1√
1−Ω0−Λ

sinh

[√
1−Ω0−Λ

∫ z

z′

dz′′

E(z′′)

]
.

The previous two equations are the basic ones that relate the
local convergence to the linear cosmic density along the line-
of-sight for any cosmological model.

3.4. The efficiency function

We call w(z) in Eq. (43) the efficiency function. It describes
the efficiency with which a lens at a given redshift z located
along the line-of-sight will affect the local convergence. This
efficiency function obviously depends on the redshift of the
sources. It is maximum at half the distance between the source
and the observer, and vanishes at both ends. In Fig. 1, we present
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(
z
)
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0
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0.4
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w(z)

Fig. 1. Shapes of the efficiency functions in different cases. In the
upper panel the selection functions n(z) are given by the thin lines
(corresponding to Eq. [2] for zs = 1 and zs=2) and we assume an
Einstein-de Sitter Universe. In the lower panel the sources are assumed
to be all located at zs = 1.5 and the cosmological parameters are varied,
thick solid line for Ω = 1, Λ = 0, thin solid line for Ω = 0.3 Λ = 0 and
thin dashed line for Ω = 0.3 and Λ = 0.7.

the shape of the efficiency function in different case. In 1a, this is
for an Einstein-de Sitter Universe for two different populations
of sources. The thin lines show the shape of the distribution
functions of the redshifts of the sources that are assumed to be
either centered on z = 1 (solid line) or z = 2 (dashed line). The
typical redshift of the lens is about 0.4 to 0.5, with a broader
distribution when the redshift of the sources is larger.

In the lower panel we show the dependence of the efficiency
function on the cosmological parameters. Here the sources are
simply assumed to all lie at z = 1.5. We can see that the shape
of the efficiency function is not really affected. The amplitude is
however changed, and it is roughly proportional to Ω0. The de-
pendence on Λ, although not totally negligible, is considerably
weaker than that on Ω0.

4. The variance of the smoothed convergence

We are interested in the statistical properties of the local con-
vergence at a given scale. We are more particularly interested in
the variance at a scale corresponding to the linear or the quasi-
linear regime where the interpretation in terms of the cosmolog-
ical models is easier. For the usual cases, sources at a redshift
of about unity, it corresponds to angular scales of about 30′, or
more.
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4.1. The convolution with the window function

Throughout this paper we assume that the geometrical filtering
is done with a top-hat window function of angular scale θ0. In the
expression (42) the smoothing applies to the exp(ik · x) factor
and it gives in the small angle approximation (see Bernardeau
1995),

1
π θ2

0

∫ θ0

0
dθ
∫ 2π

0
dφ exp(ik · x) = (44)

W2D[k⊥D0(z)θ0] expi krχ(z).

where kr is the component of k along the line-of-sight, k⊥ its
component in the transverse directions and W2D is the Fourier
transform of the 2D top-hat window function,

W2D(k) = 2
J1(k)
k

, (45)

(J1 is the Bessel function of the first kind). Note that the ex-
pression (44) involves both the distance D0(z) and the variable
χ(z). These two quantities are identical only for cosmological
models with zero curvature.

4.2. The variance in the linear regime

Using the definition (3) of the power spectrum and the relations
(44, 42) we get〈

κ2(θ0)
〉

=
1

2π

∫ ∞

0

dz1

E(z1)

∫ ∞

0

dz2

E(z2)
× (46)

w(z1)w(z2)D+(z1)D+(z2)
∫

d3k
(2π)3

P (k)×
W 2

2D[k⊥D0(z) θ0] exp [i kr (χ(z1)−χ(z2))].

where D+(z) is the growing mode of the density contrast (cf.
Eq. [3]).

We use again the assumption that the deflecting angle and
the smoothing angle are small. It implies that

P (k) ≈ P (k⊥). (47)

Then the integral over kr yields a Dirac delta function inχ(z1)−
χ(z2) leading to the expression,〈
κ2(θ0)

〉
=

1
2 π

∫ ∞

0

dz
E(z)

w(z)2D2
+(z)×∫ ∞

0
k⊥ dk⊥ P (k⊥) W 2

2D[k⊥D0(z) θ0]. (48)

In the following section we explore the properties of this func-
tion with different hypotheses for the power spectrum, the red-
shift distribution of the sources, and the cosmological parame-
ters.

4.3. Realistic results for an Einstein-de Sitter universe

For an Einstein-de Sitter Universe, the distance takes a simple
expression as a function of the redshift,

D0(z) = 2− 2/
√

1 + z (49)
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Fig. 2. The expected variance of the convergence as a function of the
smoothing angle (in degrees) for zs = 1 (solid line) and zs = 2 (dashed
line) in (2) and assuming an Einstein-de Sitter Universe.

and we have,

w(z′) = 3
2 Ω0 (1 + z′) D0(z′) ×∫∞

z′ dz n(z)
[
1−D0(z′)/D0(z)

]
. (50)

We also know that the linear growth rate of the fluctuation
is proportional to the expansion factor so that

D+(z) = 1/(1 + z). (51)

Using the power spectrum given in (5) and the redshift distri-
bution (2) for zs = 1 and zs = 2 we have calculated the angular
dependence of the variance of the local smoothed convergence.
The results are presented in Fig. 2. We can see that the typical
amplitude of the convergence is of the order of a few percent.
It starts to bend at an angular scale of about 5 to 10 degrees
corresponding to the physical scale where the power spectrum
bends down. This scale will be of crucial importance for the
evaluation of the cosmic errors on the measured moments.

We can also notice that the results have a significant depen-
dence on the adopted redshift distribution of the sources. In the
next subsection we discuss in more detail this point.

4.4. Dependence with the redshift of the sources

We explore here the dependence of the second moment with
the redshift of the sources assuming that they are all at a given
redshift zs. We also assume that the power spectrum is given by
a power law spectrum. For an Einstein-de Sitter Universe the
result reads,

〈
κ2(θ0)

〉 ∝ ∫ D0(zs)

0
dD D 2 (1−D /D0(zs))2 D −2−n =

2
(1− n)(2− n)(3− n)

D 1−n
0 (zs) (52)

where the angular distance D0 is given in the Eq. (27). For
sources of redshift of the order of 1 or 2, and for a power law
index of n ≈ −1.5, we have approximately,〈
κ2(θ0)

〉 ∝ z1.5
s . (53)
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Fig. 3. The expected dependence of the magnitude of the variance
on Ω0 for zs = 1 (solid line) and zs = 2 (dashed line). The overall
normalization is arbitrary.

This result confirms the trend observed in the previous sub-
section. It already indicates that the redshift dependence of the
second moment is rather large. Therefore any interpretation of
a measurement of such a moment in terms of magnitude of
the power spectrum would require a precise knowledge of the
sources that have been used. Moreover the magnitude of the sec-
ond moment depends as well on the values of the cosmological
parameters Ω0 and Λ. The dependence of the results on those
parameters is explored in the next subsection.

4.5. Dependence on the cosmological parameters

In this subsection we assume that the power spectrum is a power
law and that the sources are all at redshift zs = 1 or zs = 2. In
Fig. 3 we then plot the dependence of the second moment on
Ω0 for Λ = 0. We have approximately〈
κ2(θ0)

〉 ∝ Ω1.6
0 (54)

for zs = 1 and〈
κ2(θ0)

〉 ∝ Ω1.4
0 (55)

for zs = 2. The resulting Ω0 dependence is thus weaker than
what one would naively expect from Eq. (48) (e.g.

〈
κ2(θ0)

〉 ∝
Ω2

0). The fact that theΩ0 dependence is actually weaker is mainly
due to the growth factor of the linear mode. Indeed at high
redshift, for a given normalization at z = 0, the lower Ω0 the
larger the density fluctuations are.

In Fig. 4 we present a contour plot of the Ω0 and Λ de-
pendence of the second moment. We can see that the expected
magnitude of the second moment depends essentially on Ω0. It
is however degenerate with Λ when Ω0 is large. As expected,
the Λ dependence is more important when the redshift of the
sources is larger.

4.6. The variance with two populations of sources

Interestingly when one considers jointly two different popula-
tions of sources, here with zs = 1 and zs = 2, the ratio of the
two variances depends on Ω0 and Λ (see contour plot of Fig.

5) but independent of the normalization of the power spectrum.
(The dependence on the power law index is weak).

This is thus, a priori, a way to disentangle the different pa-
rameters.

5. Higher-order moments

In this section we explore the possibility of considering higher
order moments of the distribution of the local convergence. The
idea is that the higher order moments are sensitive to nonlinear
aspects of the dynamics and thus could provide independent
constraints on the cosmological parameters.

The nonlinear terms in the expression of the fields can be
calculated using Perturbation Theory. Similar calculations have
been done for the density field and for the local velocity diver-
gence. Comparisons with numerical results have shown that Per-
turbation Theory calculations give excellent quantitative predic-
tions of the behavior of the high order moments (see Bernardeau
1996b and references therein).

5.1. Second order perturbation theory for the local convergence

The basic assumption of perturbation theory is that the local
convergence can be expanded in terms of the initial density
field,

κ(ξ, z) = κ(1)(ξ, z) + κ(2)(ξ, z) + . . . (56)

whereκ(1)(ξ, z) is linear in the initial density field, so in the vari-
ables δ(k) (this is the term calculated previously), and κ(2)(ξ, z)
is quadratic in those variables, etc... For calculating the expres-
sion of κ(2)(ξ, z) we need to use the differential equation (23)
up to its second order introducing the expression of

R(2)
ij (ξ, z) = −3

2
Ω0 (1 + z)5 φ(2)

,ij(ξ, z) (57)

with

1
2
∆φ(2)(ξ, z) = δ(2)

mass(ξ, z). (58)

To find the expression of the local convergence at the second
order it is thus necessary to have the expression of the local
density at the same order.

The calculation of the second order term for the local density
has been investigated in many papers. It has now been calculated
for any cosmological model, and a very useful description is
given by,

δ(2)
mass(x) = D2

+(z)
∫

d3k1d3k2δ(k1)δ(k2)×(
5
7

+
k1 · k2

k2
1

+
2
7

(k1 · k2)2

k2
1k

2
2

)
exp [ix · (k1 + k2)], (59)

where the δ(k) factors are the Fourier transform of the initial
density field (cf. [3]).
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The coefficients appearing in this expression given for an
Einstein-de Sitter universe, are in fact slightly Ω0 and Λ de-
pendent (Bouchet et al. 1992, Bernardeau 1994). These depen-
dences are actually so weak (less than 1%) that they can be
safely neglected in the subsequent calculations.

The differential equation for D (2)
ij (ξ, z) can be obtained

from the Eq. (23), when it is developed up to its second order.
We then get,

d2
[
a(z) D (2)

ij (ξ, z)
]

dλ2
− a(z) R(0)

ik (z) D (2)
kj (ξ, z) =

−3
2

Ω0 (1 + z)4 φ(2)
ij (ξ, z) D0(z) +

+a(z) R(1)
ik (ξ, z) D (1)

kj (ξ, z) (60)

with

(D (2)
ij )z=0 = 0 ;

(
dD (2)

ij

dλ

)
z=0

= 0. (61)

The expression of the local convergence can be deduced from
the previous two equations,

κ(2)(ξ) = −
∫ ∞

0

dz′

E(z′)
w(z′)× (62)[

δ(2)
mass(ξ, z

′)− 1
2

tr
[
φ(1)
ik (ξ, z′)D (1)

kj (ξ, z′)
]
/D0(z′)

]
.

As it can be observed two terms are contributing to this ex-
pression. One term is given by the second order density field,
the other one is a combination of the linear order of the lo-
cal density and the linear order in the local amplification. The
latter corresponds to the nonlinear coupling introduced by two
subsequent deflecting lenses. In the following we will see that
the contribution to the third moment is dominated by the first
contribution.
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Fig. 5. Contour plot of the expected dependence of the magnitude of
the ratio of the two variances on Ω0 (horizontal axis) and Λ (vertical
axis).

5.2. The expression of the local skewness

The principle of such a calculation has been developed in pre-
vious papers for the density or the velocity field. It relies on
the assumption that the initial density field is Gaussian. As a
consequence we have,〈
δ(k1) . . . δ(k2p+1)

〉
= 0 (63)

and

〈
δ(k1) . . . δ(k2p)

〉
=

∑
permutations

p∏
j=1

〈
δ(k2j−1)δ(k2j)

〉
(64)

where the sum over the permutations is made in such a way that
all possible pair associations are taken into account.
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Then, applying those properties to the initial density field
one can calculate the leading term for the expression of the third
moment of the local convergence. Using the expansion (56) we
have〈
κ3(θ0)

〉
=
〈 (
κ(1) + κ(2) + . . .

)3 〉
=
〈 (
κ(1)

)3 〉
+ 3

〈 (
κ(1)

)2
κ(2)

〉
+ . . . (65)

The first term of this expression is identically zero in case
of Gaussian initial conditions. The dominant contribution
to the skewness is thus given by the next-to-leading term,
3
〈 (
κ(1)

)2
κ(2)

〉
, that combines both the expression of the lin-

ear amplification, and its second order expression.
To compute the previous expression it is worthwhile to know

that (Bernardeau 1995)∫
d2k1

∫
d2k2 W2D

(|k1 + k2|
)
W2D(k1)W2D(k2)×

P (k1) P (k2)

(
5
7

+
k1 · k2

k2
1

+
2
7

(k1 · k2)2

k2
1k

2
2

)
= (66)∫

d2k1

∫
d2k2 P (k1) P (k2)×(

6
7
W 2

2D(k1)W 2
2D(k2) +

1
4
W 2

2D(k2)
dW 2

2D

dk
(k1)

)
.

Using this property we get,

〈
κ3(θ0)

〉
=

6
(2π)2

∫ ∞

0

dz′

E(z′)
w(z′)3 D4

+(z′)×[
6
7

[∫
kdkW 2

2D(k)P (k)

]2

+ (67)

1
2

∫
k dkW 2

2D(k)P (k)×
∫
k dkW2D(k)W ′

2D(k)P (k)

]
.

This integral can thus be integrated numerically without more
technical difficulties than for the second moment3.

At this stage it is crucial to notice that the ratio,

s3(θ0) =

〈
κ3(θ0)

〉〈
κ2(θ0)

〉2 , (68)

is expected to be independent of the normalization of the
power spectrum. In the following we will explore in more
detail the dependence of this ratio on the different cosmological
parameters and physical hypothesis.

To start with let us consider a very simple case in which we
assume that we have a power law spectrum, that all sources are
at the same redshift zs and that we live in an Einstein-de Sitter

3 Note that the property (66) is valid for an angular top-hat window
function only, and would not be valid for a Gaussian window function
for instance. For other types of window function the dependence of the
skewness on the shape of the power spectrum is therefore expected to
be more complicated.
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Fig. 6. The expected parameter s3 as a function of the smoothing angle
(in degrees) for zs = 1 (solid line) and zs = 2 (dashed line) in (2), the
power spectrum (5) and assuming an Einstein-de Sitter Universe.

Universe. In such a case we find that

s3(zs) = −
[

36
7
− 3

2
(n + 2)

]
(n− 1) (n− 2) (n− 3)2 ×[

40− 4n (2n− 1)
1 + zs

− 32n√
1 + zs

]
/ (69)[

16n (2n− 5) (2n− 3) (2n− 1)
(

2− 2/
√

1 + zs
)2
]

= −
5535

(
40 +

24
1 + zs

+
48√

1 + zs

)
32768

(
2− 2√

1 + zs

)2 for n = −3/2;

which gives,

s3(zs) = ≈ −42 for n = −3/2 and zs = 1. (70)

This is a quantity a priori accessible to a measurement in a
reasonably large catalogue. In the last section we will explore
in more detail the expected magnitude of the errors for doing
such a measurement. Let us start with a study of the dependence
of this quantity on the cosmological parameters.

5.3. Numerical results for a realistic case

We present in Fig. 6 the results obtained for the function s3(θ0)
for the power spectrum (5), the source distribution (2) with zs =
1 (solid line) and zs=2 (dashed line) in case of an Einstein-de
Sitter Universe. We can see that the function s3 is rather flat,
with little variation with the smoothing angle.

5.4. Dependence on the redshift

From Eq. (69) we easily can visualize the zs dependence of s3.
This dependence is shown in Fig. 7. We can see that the result is
almost independent of the index n, and we have approximately,

s3(zs) ≈ −42 z−1.35
s . (71)

As for the variance, we found that the dependence of the skew-
ness on the redshift of the sources is also quite large.
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5.5. Dependence on the cosmological parameters

From the general formulation we can also explore the depen-
dence of the results on the cosmological parameters. In Fig. 8
we present the Ω0 dependence of the result for Λ = 0. We can
see that the dependence is rather large, approximatively as

s3(Ω0) ≈ −42 Ω−0.8
0 (72)

for zs ≈ 1. The Ω0 dependence is actually slightly weaker
when the sources are at higher redshift (when the sources are at
very small z we recover the natural expectation that s3 varies
inversely with Ω0.)

In Fig. 9 we then present the contour plot showing the de-
pendence of the parameter on Ω0 and Λ. We can see that s3 is
significantly less Λ dependent.

5.6. Discussion, simplified model

A this stage it is worth to compare the qualitative results obtained
here with those obtained for an a priori similar case: the statistics
in an angular survey. In both cases indeed the observed quantities
are proportional to the cosmic density integrated along the line-
of-sight. The expected properties of the moments of the one-
point PDF are however qualitatively different. The reason is that
for a 2D angular survey, the density fluctuations are calculated

with a selection function implicitly normalized to unity, whereas
the efficiency function in the case of the weak lensing is not
normalized (see Fig. 1). As a consequence the local convergence
is the summation of the effects of each lens plane, whereas the
local measured galaxy over-density identifies with the average
of all contributions present on the line-of-sight. The behavior
of these quantities is thus dramatically different when the depth
of the respective catalogues is changed. The variance of the
local convergence increases with the depth (as for a random
walk, the mean distance from the center increases as the square
root of the number of steps), but it becomes more and more
Gaussian, so that s3 decreases. On the other hand the variance of
the local galaxy density contrast decreases with the depth, since
the density fluctuations tend to be smoothed out. The parameter
s3 is on the other hand almost independent of this depth. This is
exactly what one would obtain by considering respectively the
summation or the average of a given number of quasi-Gaussian
variables.

From these general remarks one can build a very simple
model for the moments of the local convergence that reproduces
qualitatively the results discussed in the previous sections. Let
us define ω(zs) as the average of the efficiency function when
the sources are at redshift zs,

ω(zs) =
∫ zs

0
w(z)

dz
E(z)

. (73)

Then, from Eqs. (48) and (67) we simply expect that,〈
κ2
〉 ∝ ω(zs)2

D n+3
0 (zs)

(74)

s3 ∝ −1
ω(zs)

, (75)

which show the dependence of these statistical quantities on
the efficiency function and the depth of the catalogue. These
relations are certainly crude approximations, but explain most
of the features encountered previously, such as the dependence
of the results on Ω and on the redshift of the sources. It also
suggests the existence of a combination of

〈
κ2
〉

and s3 that
would be almost independent of the redshift of the sources.
This combination (which is almost the product of these two
quantities, since ω(zs) is proportional to the distance) would
contain information of purely cosmological nature.

5.7. Systematics due to other quadratic couplings

As it can be seen from Eq. (65) the skewness is induced by any
quadratic coupling in the observed convergence. In particular
it implies that the convergence should not be measured from
the local shear using the linear approximation. The method pro-
posed by Kaiser (1995), or a similar method, that takes into
account the nonlinear relation between the local shear and the
local convergence has to be used.

Spurious couplings can appear also through:

– nonlinear coupling between two deflecting lenses;
– coupling between two deflecting lenses due to the induced

displacement of the light path;



F. Bernardeau et al.: Weak lensing statistics as a probe of Ω and power spectrum 11

0.1 0.3 0.5 0.7 0.9
Ω

0.1

0.3

0.5

0.7

0.9

Λ

  < 1.59

  < 1.78

  < 1.97

  < 2.16

  < 2.35

  < 2.54

  < 2.73

  < 2.92

  < 3.11

  < 3.3

  > 3.3

Log(-s3)

0.1 0.3 0.5 0.7 0.9
Ω

0.1

0.3

0.5

0.7

0.9

Λ

  < 1.16

  < 1.29

  < 1.42

  < 1.55

  < 1.68

  < 1.81

  < 1.94

  < 2.07

  < 2.19

  < 2.32

  > 2.32

Log(-s3)

Fig. 9. Contour plot showing the dependence of s3 on Ω0 (horizontal axis) and Λ (vertical axis) for zs = 1 (left panel) and zs = 2 (right panel).
The contour lines are the logarithmic values of s3 regularly spaced in a logarithmic scale.

– coupling between the population of selected sources and the
local convergence;

– density fluctuations of sources.

In the following we subsequently examine the importance
of these different effects.

5.7.1. Coupling between two deflecting lenses

This coupling is due to the fact that when the light path intercepts
two lenses the resulting effect is given by the product of the
amplification matrices. The resulting convergence κtot is given
by the trace of this product, but coincides with the sum of the
convergences induced by each lens separately only in the linear
regime. In general it is indeed given by

κtot = κA + κB − κAκB − γA · γB (76)

which contain quadratic terms in the local lens densities (the
indices A and B correspond to quantities associated with the
lenses A and B respectively).

Actually this nonlinear coupling between two lenses appears
in the neglected term in (62). This term induces a corrective
expression for the second order convergence term,

κ(2)
corr.(1)(ξ) =

3
4
Ω0

∫ ∞

0

dz′

E(z′)
w(z′)× (77)∫ z′

0

dz′′

E(z′′)
D0(z′′) D0(z′′, z′)

D0(z′)
φ(1)
ik (ξ, z′)φ(1)

ki (ξ, z′′).

The other source of coupling is due to the failure of the
Born approximation (i.e. the densities are calculated along the
unperturbed light path) when two lenses are involved. Indeed the
convergence induced by a given lens is not due to the local pro-
jected density at the observed angular position if a foreground
lens shifts the apparent position of the background galaxies. It
implies that in (40) the local over-density can be taken at the un-
perturbed position only at the linear order but in general should

be taken at the position ξ + δξ where δξ is the displacement
induced by the foreground lenses. To get the quadratic coupling
one can simply write,

δ(1)
mass(ξ + δξ, z) ≈ δ(1)

mass(ξ, z) +∇δ(1)(ξ, z) · δξ. (78)

This term induces a term similar to (77),

κ(2)
corr.(2)(ξ) =

3
4
Ω0

∫ ∞

0

dz′

E(z′)
w(z′)× (79)∫ z′

0

dz′′

E(z′′)
D0(z′′) D0(z′′, z′)

D0(z′)
φ(1)
iik(ξ, z′)φ(1)

k (ξ, z′′).

These two terms obviously induce a corrective term for the
skewness. It can be easily calculated, and we estimate it here for
an Einstein-de Sitter universe for sources at a fixed redshift zs. In
such a case the second order corrective term for the convergence
reads,

κ(2)
corr.(ξ) =

9
8

∫ D0(zs)

0
dD ′D0(zs)−D ′

D0(zs)

∫ D ′

0
dD ′′ D ′′ ×

(D ′ −D ′′)
[
φ(1)
ik (D ′)φ(1)

ki (D ′′) + φ(1)
iik(D ′)φ(1)

k (D ′′)
]
.(80)

The resulting corrective term for s3 is

scorr.
3 = 3

〈
κ(2)

corr.

(
κ(1)

)2 〉
/
〈 (
κ(1)

)2 〉2
, (81)

so that4

scorr.
3 ≈ D ′′

D ′

∫ D0(zs)

0
dD ′

∫ D ′

0
dD ′′

[
6− 3

2
(n + 2)

]
×

(D0(zs)−D ′)2 (D0(zs)−D ′′) (D ′ −D ′′) (D ′′)2 ×
D ′ D0(zs) (θ0 D ′)−2−n(θ0 D ′′)−2−n/[∫ D0(zs)

0
dD ′ (D ′)2

(D0(zs)−D ′)2 (θ0 D ′)−2−n
]2

; (82)

≈ 1.55 for n = −3/2, (83)

4 we use here a similar property as in (66), see Bernardeau (1995).
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independently of the redshift of the sources. It is completely
negligible compared to the main contribution (69), and note that
this effect is expected, at first glance, to be mainly independent
of Ω0.

It might be also worth to note that the resulting deformation
field induced by two lenses is no more potential (the amplifica-
tion matrix is not symmetric). As a result, the method proposed
by Kaiser (1995) to build the local convergence from the local
shear is expected to fail at this level. Once again, this is not
expected to be crucial since the effects of this coupling are seen
to be small.

5.7.2. Coupling between the population of sources and the con-
vergence

The origin of this effect is the fact that the population of sources
on which the shear is measured may change with the local mag-
nification. In this case

κ(2)
corr. = −κ(1)(ξ)

∫ ∞

0

dz′

E(z′)
∂w(z′)
∂κ

δ(1)
mass(ξ, z

′), (84)

with

∂w(z′)
∂κ

=
3
2

Ω0 (1 + z′) D0(z′)
∫ ∞

z′

dz
D0(z)

∂n(z)
∂κ

× (85)

1√
1−Ω0−Λ

sinh

[√
1−Ω0−Λ

∫ z

z′

dz′′

E(z′′)

]
.

where ∂n(z)/∂κ is the partial derivative of the number den-
sity of sources at a given redshift with the local convergence
(therefore the local magnification) for a fixed normalization. It
can be evaluated a priori from the population of objects used to
do the measurements, and on the selection procedure. For in-
stance the mean depth of the sources is expected to change with
the local magnification. We can build a simple model in which
we assume that the sources are always at a given redshift, but
that its corresponding angular distance is a function of the local
magnification,

D0(zs) = D 0 (1 + ακ). (86)

It would imply, for an Einstein-de Sitter universe,

∂w(z)
∂κ

= α
3
2

D 2
0 (z)
D 0

. (87)

In such a case the corrective term for s3 can be calculated
straightforwardly and is given by,

scorr.
3 = 9α (1− n)/2, (88)

≈ 11α for n = −1.5. (89)

It is not necessarily completely negligible, depending on the
value of α, that is the sensitivity of the selected population of
sources with the local magnification (this will be explored in
more details in the second paper). So, one way to reduce the
effect of this coupling is to select the galaxies used to measure
the shear from a surface brightness criterion (Bartelmann &
Narayan 1995). In practice however, it is probably impossible
to suppress all influence in the selection procedure of the total
luminosity of the objects.

5.7.3. Coupling due to density fluctuations of sources

Throughout this study we have always implicitly assumed that
the sources formed a uniform background population. This is ac-
tually far from being true, and one naturally expects the sources
to have cosmic density fluctuations. The effects of these fluctu-
ations of the measurements of the local convergences strongly
depend on the adopted method. For a method based on the esti-
mation of the local magnification by the depletion of the galaxy
number density (magnification bias), this can be a very strong
effect on both moments. For methods in which the local con-
vergence is built from the measured shear, this effect is weak.
Simple considerations show that it introduces a significant cou-
pling only at the level of the fourth moment. This is due to the
fact that the populations of sources and lenses can be considered
as two independent populations so there are no direct couplings
between their density fluctuations.

6. Error evaluations due to the cosmic variance

In this section we investigate the effects of the cosmic variance
on the precision of the measurements of the second moment and
on s3. The origin of this error is the finite size of the sample in
which the measurement could be done. Typically we will assume
that the sample size is about 25 deg2, which could be accessible
in the coming years for the now available technologies. In this
section we describe the measured local convergence, κmeas.(ξ)
as the sum of the exact local convergence and a noise ε(ξ),

κmeas.(ξi) = κ(ξi) + ε(ξi). (90)

The random noise ε(ξi) components are assumed to be all in-
dependent of each other, independent of the true values of the
local convergence and to have the same variance ε,〈
ε2(ξi)

〉1/2
= ε. (91)

It is reasonable to assume that ε is of the order of 10−3 (see
Appendix B). We then introduce the notation X

c
which is the

(connected) geometrical average of the quantity X in the sam-
ple. These quantities are also cosmic random variables and are
thus expected to vary from one sample to another. Our goal is
then to estimate the ensemble averages and variances of those
geometrical averages for the quantities of interest, i.e. to know
how good they are as estimates of the true cosmic quantities.

To do such calculations we have to introduce the expression
of joint moments of the local convergence. Luckily, this is not
too complicated! Indeed in the quasi-linear regime one can show
that, when the separation between two cells is large compared
to the smoothing angle, we have〈

κp(θ0, ξ1) κq(θ0, ξ2)
〉

=

cpq
〈
κ(θ0, ξ1) κ(θ0, ξ2)

〉 〈
κ2(θ0)

〉p+q−2
, (92)

where cpq are finite quantities. This is the application to 2D
statistics of what was developed in 3D by Bernardeau (1996a).
However contrary to the 3D case, and due to projection effects,
these coefficients depend on the details of the adopted model.
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They can anyway be calculated numerically (see Appendix A).
Using these results we can calculate both the expectation value
of a measured quantity and the variance of this measure. Thus
we have〈
κ2

meas.(θ0)
〉− 〈κ2(θ0)

〉〈
κ2(θ0)

〉 =
ε2 − 〈κ2(θsample)

〉〈
κ2(θ0)

〉 ; (93)

∆
〈
κ2

meas.(θ0)
〉〈

κ2
meas.(θ0)

〉 =
√
c22

〈
κ2(θsample)

〉
; (94)〈

smeas.
3

〉− s3

s3
=(

2− 3
c21

s3

) 〈
κ2(θsample)

〉〈
κ2(θ0)

〉 − 2
ε2〈

κ2(θ0)
〉 ; (95)

∆smeas.
3

smeas.
3

=√(
c33

s2
3

+ 4c22 − 4
c32

s3

) 〈
κ2(θsample)

〉
. (96)

The numerical calculations give the values of the required co-
efficients cpq (Appendix A), from which we have〈
κ2

meas.(θ0)
〉− 〈κ2(θ0)

〉〈
κ2(θ0)

〉 = −0.13; (97)

∆
〈
κ2

meas.(θ0)
〉〈

κ2
meas.(θ0)

〉 = 0.14; (98)〈
smeas.

3 − s3
〉

s3
= −0.07; (99)

∆smeas.
3

smeas.
3

= 0.03. (100)

The cosmic errors of course decrease with the size of the sample.
What the previous results show is that the errors are already quite
small when the size of the sample is 25 deg2 and would allow,
for a perfectly well known source distribution, a determination
of the cosmological parameters at the 10 to 15% level.

7. Discussion and conclusions

Using Perturbation theory techniques, we have calculated the
variance and the skewness of the local filtered convergence κ
in an inhomogeneous cosmology in the FRW framework. The
quantity κ can be calculated from the measurement of the mag-
nification µ and/or the distortion δ.

The exploration of the dependence of the variance of κ on
the parameters of interest have shown that it is, as expected,
strongly dependent on Ω0, but also on Λ. It is of course pro-
portional to the magnitude of the power spectrum of the matter
fluctuations. These dependences, although degenerate with each
other, are of immediate cosmological interest. Note that these
dependences are given for a given power spectrum normaliza-
tion at redshift zero. As pointed out in other studies (Kaiser
1996, Jain & Seljak in preparation) if the power spectrum is
normalized to the present number density of clusters the degen-
eracy with Ω almost vanishes. More worrying is the fact that

the variance is also strongly dependent on the redshift of the
sources zs, making difficult to analyze quantitative results in a
cosmological context if the sources are not well known.

It is possible to disentangle the dependence of the variance
on the magnitude of the power spectrum and the cosmological
parameters by the use of two different populations of sources.
Thus, the ratio of the variances for these two populations could
provide constraints on the cosmological parameters indepen-
dently of the power spectrum (the dependence on its shape is
only weak). Of course the problem mentioned previously for
the knowledge of the population of sources is even more criti-
cal since both populations have to be perfectly known.

More interestingly, the skewnesss3 of the local convergence,
expressed as the ratio of the third moment and the square of the
second, can also provide a way to separate the dependence on
the cosmological parameters. We indeed found that this quan-
tity does not depend on the amplitude of the power spectrum, is
weakly dependent on its shape and varies almost as the inverse
of the density parameter, with a slight degeneracy with the cos-
mological constant. Moreover the skewness is a probe of the
initial Gaussian nature of the density field. If physical mech-
anisms such as cosmic strings, topological defects, symmetry
breaking, etc... generate non Gaussian features in the initial den-
sity field, they will modify the behavior of s3 (see Gaztañaga &
Mähönen 1996), inducing a strong angular variation of s3. The
dependence of s3 on the redshift of the sources is surprisingly
large, stressing the absolute necessity of knowing the population
of sources used to do such measurements. It is however inter-
esting to note that the product of the variance and the skewness
is almost independent of the redshift of sources, so in any case
we have a robust estimator of the product P (k) Ω0.5. It might
reveal to be an interesting quantity to consider.

An important concern was the contribution of multiple
lenses configurations in reducing the significance of these sta-
tistical estimators. We have shown that the two main quadratic
couplings between two lenses are ineffective, with contributions
of a few percent, and do not strongly depend on the cosmology.
Thus, whatever the cosmological model, the cosmological sig-
nal contained in the variance and the skewness could be slightly
weakened, but is not washed out by these additional couplings.

We have not considered higher order moments, basically be-
cause we think that they are not going to improve the situation,
i.e. to raise the degeneracy between the cosmological parameters
we have with the second and third moments. A rough calcula-
tion (taking into account only the dominant contribution) shows
interestingly that the s4 to s2

3 ratio is expected to be close to 2
for any cosmological model (Ω0, Λ and the shape of the power
spectrum). In principle it could be used as a test for the grav-
itational instability scenario with Gaussian initial conditions.
We are however far from a reliable measurement of all these
quantities.

A concern that has not been addressed in this paper is the
validity domain of these results with respect to the nonlinear
corrections due to the dynamical evolution of the cosmic fields.
These corrections are expected to intervene at small angular
scale where the physical scale of the lenses is expected to enter
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the nonlinear regime. The question is naturally, at which angu-
lar scale? The answer is not straightforward, and actually the
situation is slightly different for the second moment and for the
skewness. Indeed the second moment is always a measure of
the projected power spectrum whether or not it is in the linear
regime. This point was clearly made in a recent work (Jain and
Seljak, in preparation) where the rms polarization is calculated
including the nonlinear evolution of the power spectrum using
prescriptions as the ones developed by Hamilton et al. (1991),
Jain, Mo & White (1995) and Peacock & Dodds (1996). For s3

there are no such transformations that would take into account
the nonlinear effects. But one should have in mind that this pa-
rameter has been observed to be very robust against nonlinear
corrections (this is not necessarily the case for the product of
the variance and s3). It has been amply checked in numerical
simulations for the 3D filtered density field (see the remarkable
results of Baugh, Gaztañaga & Efstathiou, 1995). The situation
for the projected density field has not been investigated in as
many details, and extended numerical work would be necessary
for that respect. In particular it would be interesting to extend
the work of Colombi et al. (1996), who propose a prescription to
correct the high order moments of the local 3D filtered density
PDF, to the projected density. Another arduous line of investiga-
tion would be to take into account in the analytic calculations the
so called “loop corrections” as it has been pioneered by Scoc-
cimarro & Frieman (1996) for the un-smoothed density field.
Such calculations could quantify the errors introduced by the
nonlinear effects at small angular scale.

In the last section we have briefly explored the observational
requirements for completing a large observational program. We
have in particular tried to estimate the cosmic noise that would
affect a catalogue covering an area of 25deg2. This calculation is
at most indicative and should not be considered too realistic. For
instance, in this analysis we have made a fairly crude hypothesis
for the noise. In particular we have assumed that the noise due
to the intrinsic ellipticities of the galaxies is local. If this is
true for the local distortion measurement, this is not true for
the convergence if it has been obtained from the reconstruction
scheme proposed by Kaiser since it involves the gradient ofκ. In
this analysis we have also not taken into account the fluctuations
in the number density of sources, that could be significant at the
angular scale we are interested in.

On the other hand we have assumed that the moments were
calculated directly, i.e. with the average of the proper power
of the different measured convergences. This may not be the
most robust way to do it. Indeed, taking advantage of the fact
that we expect the Probability Distribution Function of the local
convergence to be close to a Gaussian distribution it is possi-
ble to estimate the variance and the skewness simply from the
shape of the PDF around its maximum. More precisely one can
use the Edgeworth expansion (see Juszkiewicz et al. 1995 and
Bernardeau & Kofman 1995) to look for the best fitting values
of the low order moments without having to actually compute
them. With such a method the results should be less sensitive to
the cosmic noise, because less sensitive to the rare events in the
tails.

We leave for a coming paper the difficult task of defining
what we think could be an optimal strategy for observing the
shear induced by the large-scale structures and obtaining con-
straints of cosmological interest out of it. But we stress in any
case that such a project demands a lensing survey at 25 square
degrees scale with a very high image quality. Such a lensing
survey will be used for the statistical work described in this pa-
per, but also to probe the angular power spectrum at scales from
the Mpc to few hundred Mpcs. This program is accessible with
the UH8K camera or with the future 16K×16K (MEGACAM)
camera at the Canada-France-Hawaii Telescope, provided op-
timal algorithms for measuring very weak shear are used. The
pixel to pixel autocorrelation function (ACF) proposed by Van
Waerbeke et al. (1996) which consists in analyzing the ellip-
ticity of the ACF induced by the gravitational shear seems a
promising approach because it does not require any more to
define object centroids and to compute shape parameters for
each individual faint galaxy from noisy images. The shape of
the sample also impacts on the signal to noise: reconstruction
method à la Kaiser is expected to introduce finite size errors
along the edges of the catalogue, so it would be interesting to
have a catalogue as compact as possible. On the other hand an
elongated catalogue has less cosmic variance.

The drawback of this project is that it requires the knowledge
of the redshift distribution of the sources, especially for faint
objects (B > 25). A spectroscopic survey to get the redshift
of these objects is unrealistic with present-day ground based
telescopes; fortunately many other methods are possible, such
as the photometric redshifts, the lensing inversion technique,
and the depletion method (see Mellier 1996 for a review). None
of them have proved their ability to get secure redshifts, but
they are potentially very attractive because they are not time
consuming.
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has been completed. The authors are also thankful to the Observatoire
de Strasbourg for its very warm hospitality.

Appendix A: expressions of joint cumulants

A.1. General expressions

The statistical quantities described in the main text are expected
to be affected by a cosmic variance due to the finite size of the
sample. The estimation of such an effect is determined by joint
moments between local smoothed convergences taken at two
different locations. Indeed these moments provide information
on how observed local smoothed convergences are expected
to be correlated. The exact derivation of the joint moments of
interest would be a difficult task, that requires an explicit cal-
culation of the higher order expression (up to the sixth order!)
of the local convergence. As we do not require a very accurate
calculation but rather a realistic estimation of these quantities
we will make some simplifications in this derivation. First of all
we will assume that the high order terms of the local conver-
gence are dominated by the projection along the line-of-sight
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of the corresponding high order terms of the local density in
the dominant lens plane. This is what has been found in Sect. 5
for the skewness, and we expect it to be also true for the cumu-
lants we are interested in. Moreover to do the calculations we
will assume that the size of the sample in which the local con-
vergence is available is significantly larger that the smoothing
angular scale. This will make the derivation of the joint cumu-
lants more simple and accessible to Perturbation Theory. Similar
results were obtained in a slight different context (Bernardeau
1996a) for which the derivation of joint cumulants is given for
3D top-hat smoothed density contrasts. It is shown that when
the distance between the smoothing cells is large compared to
the smoothing scale, the joint cumulants can be written,〈
δp1 δ

q
2

〉
c
≈ Cp,q

〈
δ2

1

〉p−1 〈
δ2

2

〉q−1 〈
δ1 δ2

〉
, (A1)

at the leading order in Perturbation Theory, and where the Cpq

coefficients are finite numbers (they are constant for a power
law spectrum). A crucial property for these coefficients is that
we have,

Cp,q = Cp,1 Cq,1 (A2)

so that the derivation of these coefficients reduces to the calcula-
tions of a single index series of numbers. They have been given
in the paper mentioned above for the 3D top-hat smoothing.

These results cannot be used directly to estimate the joint
moments we are interested in, but form however the basis of the
calculations. Indeed if we assume, as mentioned in the intro-
duction of this appendix, that the high order expressions of the
local convergence are dominated by the projection of the local
density of the lenses at the same order, then the expressions of
the joint moments are given by the integration over the line-of-
sight of the relation (A1) where the coefficientsCp,q correspond
to the top-hat smoothed joint cumulants for the 2D dynamics.
This is a situation which is similar to the situation encountered
in the derivation of the expression of the high order moments in
angular survey.

Using the calculation developed in Bernardeau (1996a) and
applying it to the 2D dynamics we get, for a power law spectrum
of index n,

C2D
2,1 =

24
7
− (n + 2)

2
, (A3)

and

C2D
3,1 =

1473
49

− 195
14

(n + 2) +
3
2

(n + 2)2. (A4)

Then, as a consequence, the local joint cumulants follow a
similar hierarchy〈

κ(ξ1)p κ(ξ2)q
〉
c

= (A5)

cp,q
〈
κ(ξ1)2

〉p−1 〈
κ(ξ2)2

〉q−1 〈
κ(ξ1)κ(ξ2)

〉
,

where the coefficients cp,q are given by ratios of integrals along
the line-of-sight. We give here the expressions of these integrals

for an Einstein-de Sitter Universe, and we will limit the explicit
numerical calculations of these expressions for this case,

cp,q = C2D
p,q

Qp+q

Q2 P
p+q−2
2

. (A6)

with

Qp = θ−(n+2)(p−2)
0 (A7)∫ D0

0
dD w(D )p D (n+2)(p−2) D2p−2

+ (D ) ξ2D(D )

Pp = θ−(n+2)(p−1)
0 (A8)∫ D0

0
dD w(D )p D (n+2)(p−1) D2p−2

+ (D )

where

ξ2D(D ) =
∫ ∞

0
k⊥ dk⊥ P (k⊥) J0[k⊥ D θ1,2]. (A9)

J0 is the Bessel function of the first kind and θ1,2 is the angle
between the two directions of the smoothing cells 1 and 2.

The final step is to take the geometrical averages of these
joint moments in the sample. It is expected to be dominated by
cells being at the distance of the order of the size of the sample,
θsample. Then the averaged moments follow the same hierarchy
as in (A5) but for which the function ξ(D ) is replaced by

ξ2D(D ) =
∫ ∞

0
k⊥ dk⊥ P (k⊥) W 2

2D[k⊥ D θ1,2]. (A10)

where W2D is introduced in (45). This result is valid if the
sample has a spherical shape, although it is by no means a crucial
hypothesis.

In the latter case the integral Q2 is actually the expression
of the variance of the convergence in the whole sample. All the
considered joint cumulants are also found to be proportional to
this variance, and thus the cosmic uncertainties on the results
will be all the more important that this integral is large. The
results will therefore depend very strongly on the adopted shape
of the power spectrum. In the following subsection we give the
numerical results for the APM measured power spectrum (5).
Compared to a CDM spectrum it contains more power at large
scale and is thus less favorable for the estimation of the cosmic
errors, but it is probably more realistic.

A.2. Numerical results

In the following we give the results of the previous integrals for
the power spectrum given in (5). The index at the 30’ smoothing
scale is found to be

n ≈ −1.45, (A11)

and then the coefficients of interest are found to be

c2,1 = 36.7 (A12)

c2,2 = 1400 (A13)

c3,1 = 3200 (A14)

c3,2 = 125, 300 (A15)

c3,3 = 11, 400, 000 (A16)
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for a sample size of 25 deg2, corresponding to a sample size of
θsample ≈ 3 deg. These results are calculated with the distribu-
tion of lenses (2) in which zs ≈ 1.

Appendix B: evaluation of the cosmic errors

In this appendix we present the derivation of the errors, due to
the cosmic variance, i.e. the fact that measurements made in a
finite sample are affected by systematic and random errors. We
will naturally focus our presentation on the second and third
moments of the local smoothed convergence.

To present the calculations it is necessary to introduce two
different averages. One is the geometrical average, the mean
value of a given observed quantity at different locations, and
the second is the ensemble average, which corresponds to the
expectation value of quantities that depend on cosmic variables
(local densities..) or random quantities associated with intrin-
sic properties of the galaxies such as their intrinsic ellipticities.
In principle the two averages of a same quantity coincide in a
perfect case, that is if the available data set was infinite, but in
practice this is obviously not the case! Actually, the geomet-
rical averages, considered as estimations of the corresponding
ensemble averages, are also random variables that are expected
to vary from one sample to another. In the following we esti-
mate the properties of these geometrical averages, that is their
cosmic expectation values and their variances, assuming that
for a sufficiently large sample they obey a Gaussian statistics.
We follow here ideas that were developed by Colombi, Bouchet
& Schaeffer (1995) and more precisely by Szapudi & Colombi
(1996).

B.1. Notations

In the following we denote X
c

the (connected) geometrical av-
erage of a quantityX (and as usual,

〈
X
〉
c

its ensemble average).
Thus the observed moments of the measured convergence are

κ =
1
Nc

Nc∑
i=1

κi (B1)

κ2
c

=
1
Nc

Nc∑
i=1

κ2
i − (κ)2 (B2)

. . .

where the summations are made over the Nc different locations
where the smoothed convergences are supposed to have been
determined. We actually assume that the local convergences
have been measured in a compact sample, of a size significantly
larger than the smoothing length. In the geometrical averages
it is also not excluded that the smoothing areas overlap, so
that Nc can actually be arbitrarily large. Of course the resulting
averages cannot be arbitrarily accurate because the measured κi
are correlated variables, and will be all the more correlated that
they are measured in close directions.

B.2. Modelisation

In the following we not only estimate the errors due to the cos-
mic variance but also the effects of the intrinsic noise in the

measurements due to the use of a limited number of tracers for
the shear and of their intrinsic imperfections. So assume that
the measured convergence in the direction ξi is given by,

κmeas.(ξi) = κ(ξi) + ε(ξi), (B3)

where κ(ξi) is the true cosmological value of the local con-
vergence in the direction ξi and ε(ξi) is the error made in this
same direction due to the intrinsic ellipticities of the galaxies.
Assuming the ellipticities of the galaxies are independent from
one another, and using results obtained for their intrinsic ellip-
ticities (see for instance Miralda-Escudé 1991b) we get,

〈
ε(ξi)

2
〉 ≈ 10−1

√
ng

, (B4)

whereng is the number of galaxies in a given smoothing angular
cell. Moreover two variables ε(ξi) and ε(ξj) are independent if
the corresponding cells do not overlap, and they are all assumed
to be independent of the true values of the local convergences.
This is probably a rather simple and naive modelisation but
we leave more accurate numerical studies of a more realistic
modelisation for a further paper.

As the variance of ε(ξi) is independent of i we will denote,
ε their common RMS fluctuation,〈
ε(ξi)

2
〉

= ε2 (B5)

and from the expected density of galaxies in a (30′)2 field (about
104 for the limit magnitudes B = 27 or I = 26 currently used
in ultra-deep imaging; Tyson 1988, Smail et al. 1995) we can
estimate that

ε ≈ 10−3. (B6)

We then define the random variable ep that describes the de-
parture between an observed geometrical average and the cor-
responding ensemble average,

κ(θ0) = e1 (B7)

and

κp(θ0)
c

=
〈
κp(θ0)

〉
c

(1 + ep) (B8)

for p > 1. In the following we will assume that the cosmic ran-
dom variables ep have a small variance compared to the vari-
ance at the smoothing scale. Therefore the variables ep can be
considered to follow a Gaussian statistics and we will do the
calculation at their dominant order. The knowledge of the cos-
mic errors in any of the considered measurements can then be
derived from the values of the variances and cross-correlations
between these variables.

B.3. Statistical properties of the variables ep

To obtain the statistical properties of ep one can simply con-
sider the ensemble average of the κp(θ0)

c
, of their squares and
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products. From the assumed properties of the variables ε(ξi)
and κ(ξi) we have,〈
κmeas.(θ0)

〉
= 0 (B9)〈

κmeas.(θ0)
2〉

=
〈
κ2(θsample)

〉
(B10)

where we have identified the geometrical average of〈
κ(ξi)κ(ξj)

〉
with the variance of the local convergence at the

scale of the sample, θsample. At this scale we assume that the
ensemble average of ε(ξi) is negligible compared to the one of
κ: it decreases like Poisson noise, that is more rapidly than the
variance of the convergence.

The ensemble averages for the second moment read,〈
κ2

meas.(θ0)
c〉

=〈
κ2(θ0)

〉
+ ε2 − 〈κ2(θsample)

〉
(B11)〈 (

κ2
meas.(θ0)

c
)2 〉

=〈
κ2(θ0)

〉2 − 2
〈
κ2(θ0)

〉 〈
κ2(θsample)

〉
+ (B12)

+2 ε2
〈
κ2(θ0)

〉
+ c2,2

〈
κ2(θ0)

〉2 〈
κ2(θsample)

〉
where the calculations have been limited to the quadratic terms

in ε and
〈
κ2(θsample)

〉1/2
. The calculations make also intervene

the geometrical averages of the joint moments
〈
κ2(ξi)κ

2(ξj)
〉

which are evaluated in the previous appendix.
For the third moment we have,〈

κ3
meas.(θ0)

c〉
=〈

κ3(θ0)
〉− 3c2,1

〈
κ2(θ0)

〉 〈
κ2(θsample)

〉
, (B13)〈 (

κ3
meas.(θ0)

c
)2 〉

=〈
κ3(θ0)

〉2
+ c3,3

〈
κ2(θ0)

〉4 〈
κ2(θsample)

〉− (B14)

−6 c2,1
〈
κ2(θ0)

〉3 〈
κ2(θsample)

〉
.

We have also to consider the cross-correlations between those
moments which give,〈

κmeas.(θ0)
c
κ2

meas.(θ0)
c〉

=

c2,1
〈
κ2(θ0)

〉 〈
κ2(θsample)

〉
, (B15)〈

κmeas.(θ0)
c
κ3

meas.(θ0)
c〉

=

c3,1
〈
κ2(θ0)

〉2 〈
κ2(θsample)

〉
, (B16)〈

κ2
meas.(θ0)

c
κ3

meas.(θ0)
c〉

=〈
κ3(θ0)

〉2 − 〈κ3(θ0)
〉 〈
κ2(θsample)

〉
+ (B17)

+c3,2
〈
κ2(θ0)

〉3 〈
κ2(θsample)

〉−
−3 c2,1

〈
κ2(θ0)

〉2 〈
κ2(θsample)

〉
+ ε2

〈
κ3(θ0)

〉
.

From these results we have entirely define the statistical prop-
erties of the variables e1, e2 and e3. Simple identifications lead
to〈

e1
〉

= 0, (B18)

〈
e2

1

〉
=
〈
κ2(θsample)

〉
, (B19)〈

e2
〉

=
ε2 − 〈κ2(θsample)

〉〈
κ2(θ0)

〉 , (B20)〈
e2

2

〉
= c2,2

〈
κ2(θsample)

〉
(B21)〈

e3
〉

= −3
c2,1

s3

〈
κ2(θsample)

〉〈
κ2(θ0)

〉 , (B22)〈
e2

3

〉
=
c3,3

s2
3

〈
κ2(θsample)

〉
, (B23)〈

e1e2
〉

= c2,1
〈
κ2(θsample)

〉
, (B24)〈

e1e3
〉

=
c3,1

s3

〈
κ2(θsample)

〉
, (B25)〈

e2e3
〉

=
c3,2

s3

〈
κ2(θsample)

〉
. (B26)

It is interesting to note that ε enters only in the expectation value
of e2.

As a result we can calculate both the expectation value of
a measured quantity and the variance of this measure. To do
so the quantities we are interested in are expressed in terms of
the random variables ep and expanded up to the quadratic order.
This is a trivial calculation for the variance, and for the measured
s3 we have

smeas.
3 = s3

1 + e3

(1 + e2)2

≈ s3(1 + e3 − 2e2 + 3e2
2 − 2e2e3 + . . .) (B27)(

smeas.
3

)2
= s2

3
(1 + e3)2

(1 + e2)4

≈ s2
3(1 + 2e3 − 4e2 + e2

3 − 8e2e3 + 10e2
2 + . . .).(B28)

Of course this expansion is correct only if the sample size is
larger than the smoothing scale.

B.4. Results for the variance and for s3

Then when we apply the previous rules on the variables ep and
get〈
κ2

meas.(θ0)
〉− 〈κ2(θ0)

〉〈
κ2(θ0)

〉 =
ε2 − 〈κ2(θsample)

〉〈
κ2(θ0)

〉 ; (B29)

∆
〈
κ2

meas.(θ0)
〉〈

κ2
meas.(θ0)

〉 =
√
c22

〈
κ2(θsample)

〉
; (B30)〈

smeas.
3

〉− s3

s3
=(

2− 3
c21

s3

) 〈
κ2(θsample)

〉〈
κ2(θ0)

〉 − 2
ε2〈

κ2(θ0)
〉 ; (B31)

∆smeas.
3

smeas.
3

=√(
c33

s2
3

+ 4c22 − 4
c32

s3

) 〈
κ2(θsample)

〉
. (B32)

One can distinguish two different effects of the cosmic variance
for the uncertainties of the results. There is first a systematic shift
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proportional to the ratio of the variances. And secondly a cosmic
scatter is expected to appear, which is directly proportional to
the RMS of the fluctuations of the convergence at the sample
scale. It is thus crucial to have a catalogue as large as possible!

Using the numerical results of the previous appendix we
have〈
κ2

meas.(θ0)
〉− 〈κ2(θ0)

〉〈
κ2(θ0)

〉 = −0.13; (B33)

∆
〈
κ2

meas.(θ0)
〉〈

κ2
meas.(θ0)

〉 = 0.14; (B34)〈
smeas.

3

〉− s3

s3
= −0.07; (B35)

∆smeas.
3

smeas.
3

= 0.04. (B36)

The cosmic errors of course decreases with the size of the sam-
ple. What the previous results show is that the errors are already
quite small when the size of the sample is 25 deg2 and would
allow, for a perfectly well known source distribution, a deter-
mination of the cosmological parameters at the 5 to 10% level.
Note that s3 appears to be less sensitive to the cosmic variance
because it is a ratio of moments.
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